On Grunbaum and retrocausation in classical electrodynamics

Philosophy of Science 46 (1):118-135 (1979)
Abstract
A detailed analysis is made of Grunbaum's claim that the Abraham-Lorentz (AL) and Dirac-Lorentz (DL) equations have no bearing on causality. It is pointed out that (a) both equations are derived from F = ma, and thus should obey the same causality conditions as Newton's law, (b) independently of what boundary conditions are imposed, non-causal behavior is always along the same straight line as the force, (c) the distinction in status between laws and boundary conditions which Grunbaum imposes is one which is not always useful, especially since what is a law in one formulation of the theory can become a boundary condition in another, and thus it is argued that a complete theory must be such that laws and boundary conditions form a coherent whole, (d) the asymptotic boundary conditions that are applied are in agreement with experiment, (e) the AL equation is such that if the "effect," the acceleration as function of time, is known, then the "cause," the force, can be determined. In addition, it is noted that in the DL equation the acceleration at times later than t influences the acceleration at t. Finally, it is pointed out that electrodynamics is indeed a causal field theory, and that retrocausality is due to the transition from a field description to a particle description
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,304
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

2 ( #316,660 of 1,096,372 )

Recent downloads (6 months)

1 ( #224,935 of 1,096,372 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.