The “Structure” of Physics

Journal of Philosophy 106 (2):57-88 (2009)
Abstract
We are used to talking about the “structure” posited by a given theory of physics. We say that relativity is a theory about spacetime structure. Special relativity posits one spacetime structure; different models of general relativity posit different spacetime structures. We also talk of the “existence” of these structures. Special relativity says the world’s spacetime structure is Minkowskian: it posits that this spacetime structure exists. Understanding structure in this sense seems important for understanding what physics is telling us about the world. But it is not immediately obvious just what this structure is, or what we mean by the existence of one structure, rather than another. The idea of mathematical structure is relatively straightforward. There is geometric structure, topological structure, algebraic structure, and so forth. Mathematical structure tells us how abstract mathematical objects t together to form different types of mathematical spaces. Insofar as we understand mathematical objects, we can understand mathematical structure. Of course, what to say about the nature of mathematical objects isn’t easy. But there seems to be no further problem for understanding mathematical structure. Modern theories of physics are formulated in terms of these mathematical structures. In order to understand “structure” as used in physics, then, it seems we must simply look at the structure of the mathematics that is used to state the physics. But it is not that simple. Physics is supposed to be telling us about the nature of the world. If our physical theories are formulated in mathematical language, using mathematical objects, then this mathematics is somehow telling us about the physical make-up of the world. What is..
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,826
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Steven French (2012). Unitary Inequivalence as a Problem for Structural Realism. Studies in History and Philosophy of Science Part B 43 (2):121-136.
Jill North (2010). An Empirical Approach to Symmetry and Probability. Studies in History and Philosophy of Science Part B 41 (1):27-40.

View all 8 citations

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

209 ( #2,814 of 1,100,145 )

Recent downloads (6 months)

18 ( #11,693 of 1,100,145 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.