A complete minimal logic of the propositional contents of thought

Studia Logica 54 (3):391 - 410 (1995)
Abstract
Our purpose is to formulate a complete logic of propositions that takes into account the fact that propositions are both senses provided with truth values and contents of conceptual thoughts. In our formalization, propositions are more complex entities than simple functions from possible worlds into truth values. They have a structure of constituents (a content) in addition to truth conditions. The formalization is adequate for the purposes of the logic of speech acts. It imposes a stronger criterion of propositional identity than strict equivalence. Two propositions P and Q are identical if and only if, for any illocutionary force F, it is not possible to perform with success a speech act of the form F(P) without also performing with success a speech act of the form F(Q). Unlike hyperintensional logic, our logic of propositions is compatible with the classical Boolean laws of propositional identity such as the symmetry and the associativity of conjunction and the reduction of double negation.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    10 ( #120,443 of 1,089,053 )

    Recent downloads (6 months)

    1 ( #69,801 of 1,089,053 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.