Absurdity as unary operator

Abstract
It was shown in the previous work of the author that one can avoid the paradox of minimal logic { ϕ , ¬ ϕ } ¬ ψ defining the negation operator via reduction not a constant of absurdity, but to a unary operator of absurdity. In the present article we study in details what does it mean that negation in a logical system can be represented via an absurdity or contradiction operator. We distinguish different sorts of such presentations. Finally, we consider the possibility to represent the negation via absurdity and contradiction operators in such well known systems of paraconsistent logic as D.Batens's logic CLuN and Sette's logic P 1.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,374
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

7 ( #180,440 of 1,096,839 )

Recent downloads (6 months)

1 ( #273,068 of 1,096,839 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.