A recursion principle for linear orderings

Journal of Symbolic Logic 57 (1):82-96 (1992)
The idea of this paper is to approach linear orderings as generalized ordinals and to study how they are made from their initial segments. First we look at how the equality of two linear orderings can be expressed in terms of equality of their initial segments. Then we shall use similar methods to define functions by recursion with respect to the initial segment relation. Our method is based on the use of a game where smaller and smaller initial segments of linear orderings are considered. The length of the game is assumed to exceed that of the descending sequences of elements of the linear orderings considered. By use of such game-theoretical methods we can for example extend the recursive definitions of the operations of sum, product and exponentiation of ordinals in a unique and natural way for arbitrary linear orderings. Extensions coming from direct limits do not satisfy our game-theoretic requirements in general. We also show how our recursive definitions allow very simple constructions for fixed points of functions, giving rise to certain interesting linear orderings
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index


    Total downloads

    1 ( #306,128 of 1,088,384 )

    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.