On Ehrenfeucht-fraïssé equivalence of linear orderings

Journal of Symbolic Logic 55 (1):65-73 (1990)
C. Karp has shown that if α is an ordinal with ω α = α and A is a linear ordering with a smallest element, then α and $\alpha \bigotimes A$ are equivalent in L ∞ω up to quantifer rank α. This result can be expressed in terms of Ehrenfeucht-Fraïssé games where player ∀ has to make additional moves by choosing elements of a descending sequence in α. Our aim in this paper is to prove a similar result for Ehrenfeucht-Fraïssé games of length ω 1 . One implication of such a result will be that a certain infinite quantifier language cannot say that a linear ordering has no descending ω 1 -sequences (when the alphabet contains only one binary relation symbol). Connected work is done by Hyttinen and Oikkonen in [H] and [O]
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2274954
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,865
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

7 ( #291,659 of 1,725,051 )

Recent downloads (6 months)

3 ( #210,935 of 1,725,051 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.