Measuring coherence using LP-models

Journal of Applied Logic 2 (4):451-455 (2004)
This paper introduces a technique for measuring the degree of (in)coherence of inconsistent sets of propositional formulas. The coherence of these sets of formulas is calculated using the minimal models of those sets in G. Priest's Logic of Paradox. The compatibility of the information expressed by a set of formulas with the background or domain knowledge can also be measured with this technique. In this way, Hunter's objections to many-valued paraconsistent logics as instruments for measuring (in)coherence are addressed.
Keywords Paraconsistent logics  Many-valued logics  (In)consistency measures
Categories (categorize this paper)
DOI 10.1016/j.jal.2004.07.005
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 22,734
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Graham Priest (1991). Minimally Inconsistent LP. Studia Logica 50 (2):321 - 331.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index


Total downloads


Recent downloads (6 months)


How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.