Subdirectly irreducible residuated semilattices and positive universal classes

Studia Logica 83 (1-3):393 - 406 (2006)
CRS(fc) denotes the variety of commutative residuated semilattice-ordered monoids that satisfy (x ⋀ e)k ≤ (x ⋀ e)k+1. A structural characterization of the subdi-rectly irreducible members of CRS(k) is proved, and is then used to provide a constructive approach to the axiomatization of varieties generated by positive universal subclasses of CRS(k).
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index


    Total downloads


    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.