Formal learning theory in context

Abstract
One version of the problem of induction is how to justify hypotheses in the face of data. Why advance hypothesis A rather than B — or in a probabilistic context, why attach greater probability to A than B? If the data arrive as a stream of observations (distributed through time) then the problem is to justify the associated stream of hypotheses. Several perspectives on this problem have been developed including Bayesianism (Howson and Urbach, 1993) and belief-updating (Hansson, 1999). These are broad families of approaches; the citations are meant just as portals.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,825
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

5 ( #234,882 of 1,100,032 )

Recent downloads (6 months)

1 ( #304,128 of 1,100,032 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.