Scientific Discovery from the Perspective of Hypothesis Acceptance

Philosophy of Science 69 (S3):S331-S341 (2002)
Abstract
A model of inductive inquiry is defined within the context of first‐order logic. The model conceives of inquiry as a game between Nature and a scientist. To begin the game, a nonlogical vocabulary is agreed upon by the two players, along with a partition of a class of countable structures for that vocabulary. Next, Nature secretly chooses one structure from some cell of the partition. She then presents the scientist with a sequence of facts about the chosen structure. With each new datum the scientist announces a guess about the cell to which the chosen structure belongs. To succeed in his or her inquiry, the scientist’s successive conjectures must be correct all but finitely often, that is, the conjectures must converge in the limit to the correct cell. Different kinds of scientists can be investigated within this framework. At opposite ends of the spectrum are dumb scientists that rely on the strategy of “induction by enumeration,” and smart scientists that rely on an operator of belief revision. We report some results about the scope and limits of these two inductive strategies
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 13,009
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-03-13

Total downloads

15 ( #122,654 of 1,410,123 )

Recent downloads (6 months)

1 ( #177,589 of 1,410,123 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.