Filtral powers of structures

Journal of Symbolic Logic 63 (4):1239-1254 (1998)
Abstract
Among the results of this paper are the following: 1. Every Boolean (ultra) power is the union of an updirected elementary family of direct ultrapowers. 2. Under certain conditions, a finitely iterated Boolean ultrapower is isomorphic to a single Boolean ultrapower. 3. A ω-bounded filtral power is an elementary substructure of a filtral power. 4. Let K be an elementary class closed under updirected unions (e.g., if K is an amalgamation class); then K is closed under finite products if and only if K is closed under reduced products if and only if K is a Horn class
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,561
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

3 ( #288,716 of 1,098,129 )

Recent downloads (6 months)

3 ( #112,729 of 1,098,129 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.