Knowledge of proofs

Topoi 13 (2):93-100 (1994)
Abstract
If proofs are nothing more than truth makers, then there is no force in the standard argument against classical logic (there is no guarantee that there is either a proof forA or a proof fornot A). The standard intuitionistic conception of a mathematical proof is stronger: there are epistemic constraints on proofs. But the idea that proofs must be recognizable as such by us, with our actual capacities, is incompatible with the standard intuitionistic explanations of the meanings of the logical constants. Proofs are to be recognizable in principle, not necessarily in practice, as shown in section 1. Section 2 considers unknowable propositions of the kind involved in Fitch''s paradox:p and it will never be known thatp. It is argued that the intuitionist faces a dilemma: give up strongly entrenched common sense intuitions about such unknowable propositions, or give up verificationism. The third section considers one attempt to save intuitionism while partly giving up verificationism: keep the idea that a proposition is true iff there is a proof (verification) of it, and reject the idea that proofs must be recognizable in principle. It is argued that this move will have the effect that some standard reasons against classical semantics will be effective also against intuitionism. This is the case with Dummett''s meaning theoretical argument. At the same time the basic reason for regarding proofs as more than mere truth makers is lost.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,750
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

View all 13 references

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

14 ( #112,664 of 1,098,887 )

Recent downloads (6 months)

1 ( #286,682 of 1,098,887 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.