Undecidability in rn: Riddled basins, the KAM tori, and the stability of the solar system

Philosophy of Science 70 (2):359-382 (2003)
Some have suggested that certain classical physical systems have undecidable long-term behavior, without specifying an appropriate notion of decidability over the reals. We introduce such a notion, decidability in (or d- ) for any measure , which is particularly appropriate for physics and in some ways more intuitive than Ko's (1991) recursive approximability (r.a.). For Lebesgue measure , d- implies r.a. Sets with positive -measure that are sufficiently "riddled" with holes are never d- but are often r.a. This explicates Sommerer and Ott's (1996) claim of uncomputable behavior in a system with riddled basins of attraction. Furthermore, it clarifies speculations that the stability of the solar system (and similar systems) may be undecidable, for the invariant tori established by KAM theory form sets that are not d-.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1086/375472
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,904
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

17 ( #157,110 of 1,725,449 )

Recent downloads (6 months)

9 ( #72,348 of 1,725,449 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.