Pure Second-Order Logic with Second-Order Identity

Notre Dame Journal of Formal Logic 51 (3):351-360 (2010)
Pure second-order logic is second-order logic without functional or first-order variables. In "Pure Second-Order Logic," Denyer shows that pure second-order logic is compact and that its notion of logical truth is decidable. However, his argument does not extend to pure second-order logic with second-order identity. We give a more general argument, based on elimination of quantifiers, which shows that any formula of pure second-order logic with second-order identity is equivalent to a member of a circumscribed class of formulas. As a corollary, pure second-order logic with second-order identity is compact, its notion of logical truth is decidable, and it satisfies a pure second-order analogue of model completeness. We end by mentioning an extension to n th-order pure logics
Keywords second-order logic   nth-order logic   elimination of quantifiers   compactness   decidability of validity   model completeness
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    35 ( #41,686 of 1,089,047 )

    Recent downloads (6 months)

    1 ( #69,722 of 1,089,047 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.