Pure Second-Order Logic with Second-Order Identity

Notre Dame Journal of Formal Logic 51 (3):351-360 (2010)
Abstract
Pure second-order logic is second-order logic without functional or first-order variables. In "Pure Second-Order Logic," Denyer shows that pure second-order logic is compact and that its notion of logical truth is decidable. However, his argument does not extend to pure second-order logic with second-order identity. We give a more general argument, based on elimination of quantifiers, which shows that any formula of pure second-order logic with second-order identity is equivalent to a member of a circumscribed class of formulas. As a corollary, pure second-order logic with second-order identity is compact, its notion of logical truth is decidable, and it satisfies a pure second-order analogue of model completeness. We end by mentioning an extension to n th-order pure logics
Keywords second-order logic   nth-order logic   elimination of quantifiers   compactness   decidability of validity   model completeness
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,768
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2010-08-19

Total downloads

41 ( #40,544 of 1,099,003 )

Recent downloads (6 months)

6 ( #43,697 of 1,099,003 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.