McGee on open-ended schemas

A mathematical theory T is categorical if, and only if, any two models of T are isomorphic. If T is categorical, it can be shown to be semantically complete: for every sentence ϕ in the language of T, either ϕ follows semantically from T or ¬ϕ does. For this reason some authors maintain that categoricity theorems are philosophically significant: they support the realist thesis that mathematical statements have determinate truth-values. Second-order arithmetic (PA2) is a case in hand: it can be shown to be categorical and semantically complete. The status of second-order logic is a controversial issue, however. Worries about the purported set-theoretic nature and ontological commitments of second-order logic have been influential in the debate.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,201
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index


Total downloads

1 ( #842,646 of 1,940,955 )

Recent downloads (6 months)


How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.