Thephilosophyofautomatedtheoremproving

Abstract
Different researchers use "the philosophy of automated theorem p r o v i n g " t o cover d i f f e r e n t concepts, indeed, different levels of concepts. Some w o u l d count such issues as h o w to e f f i c i e n t l y i n d e x databases as part of the philosophy of automated theorem p r o v i n g . Others wonder about whether f o r m u l a s should be represented as strings or as trees or as lists, and call this part of the philosophy of automated theorem p r o v i n g . Yet others concern themselves w i t h what k i n d o f search should b e embodied i n a n y automated theorem prover, or to what degree any automated theorem prover should resemble Prolog. Still others debate whether natural deduction or semantic tableaux or resolution is " b e t t e r " , a n d c a l l t h i s a part of the p h i l o s o p h y of automated theorem p r o v i n g . Some people wonder whether automated theorem p r o v i n g should be " h u m a n oriented" or "machine o r i e n t e d " — sometimes arguing about whether the internal p r o o f methods should be " h u m a n - I i k e " or not, sometimes arguing about whether the generated proof should be output in a f o r m u n d e r s t a n d a b l e by p e o p l e , and sometimes a r g u i n g a b o u t the d e s i r a b i l i t y o f h u m a n intervention in the process of constructing a proof. There are also those w h o ask such questions as whether we s h o u l d even be concerned w i t h completeness or w i t h soundness of a system, or perhaps we should instead look at very efficient (but i n c o m p l e t e ) subsystems or look at methods of generating models w h i c h might nevertheless validate invalid arguments. A n d a l l of these have been v i e w e d as issues in the philosophy of automated theorem proving. Here, I w o u l d l i k e to step back from such i m p l e m e n t - ation issues and ask: " W h a t do we really think we are doing when we w r i t e an automated theorem prover?" My reflections are perhaps idiosyncratic, but I do think that they put the different researchers* efforts into a broader perspective, and give us some k i n d of handle on w h i c h directions we ourselves m i g h t w i s h to pursue when constructing (or extending) an automated theorem proving system. A logic is defined to be (i) a vocabulary and formation rules ( w h i c h tells us w h a t strings of symbols are w e l l - formed formulas in the logic), and ( i i ) a definition of ' p r o o f in that system ( w h i c h tells us the conditions under which an arrangement of formulas in the system constitutes a proof). Historically speaking, definitions of ' p r o o f have been given in various different manners: the most c o m m o n have been H i l b e r t - s t y l e ( a x i o m a t i c ) , Gentzen-style (consecution, or sequent), F i t c h - s t y l e (natural deduction), and Beth-style (tableaux)..
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,768
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2010-12-22

Total downloads

0

Recent downloads (6 months)

0

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.