Two concepts of validity and completeness

Abstract
A formula is (materially) valid iff all its instances are true sentences; and an axiomatic system is called (materially) sound and complete iff it proves all and only valid formulas. These are 'natural' concepts of validity and completeness, which were, however, in the course of the history of modern logic, stealthily replaced by their formal descendants: formal validity and completeness. A formula is formally valid iff it is true under all interpretations in all universes; and an axiomatic system is called formally sound and complete iff it proves all and only formulas valid in this sense. Though the step from material to formal validity and completeness may seem to be merely an unproblematic case of explication, I argue that it is not; and that mistaking the latter concepts for the former ones may lead to serious conceptual confusions.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links This entry has no external links. Add one.
Through your library Only published papers are available at libraries
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-01-28

Total downloads

1 ( #306,343 of 1,089,127 )

Recent downloads (6 months)

0

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.