Two concepts of validity and completeness

A formula is (materially) valid iff all its instances are true sentences; and an axiomatic system is called (materially) sound and complete iff it proves all and only valid formulas. These are 'natural' concepts of validity and completeness, which were, however, in the course of the history of modern logic, stealthily replaced by their formal descendants: formal validity and completeness. A formula is formally valid iff it is true under all interpretations in all universes; and an axiomatic system is called formally sound and complete iff it proves all and only formulas valid in this sense. Though the step from material to formal validity and completeness may seem to be merely an unproblematic case of explication, I argue that it is not; and that mistaking the latter concepts for the former ones may lead to serious conceptual confusions.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index


Total downloads

1 ( #647,778 of 1,726,249 )

Recent downloads (6 months)


How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.