Coherence in substructural categories

Studia Logica 70 (2):271 - 296 (2002)
Abstract
It is proved that MacLane''s coherence results for monoidal and symmetric monoidal categories can be extended to some other categories with multiplication; namely, to relevant, affine and cartesian categories. All results are formulated in terms of natural transformations equipped with graphs (g-natural transformations) and corresponding morphism theorems are given as consequences. Using these results, some basic relations between the free categories of these classes are obtained.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    3 ( #224,108 of 1,089,155 )

    Recent downloads (6 months)

    1 ( #69,735 of 1,089,155 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.