On interpretations of bounded arithmetic and bounded set theory

Notre Dame Journal of Formal Logic 50 (2):141-152 (2009)
Abstract
In 'On interpretations of arithmetic and set theory', Kaye and Wong proved the following result, which they considered to belong to the folklore of mathematical logic.

THEOREM 1 The first-order theories of Peano arithmetic and Zermelo-Fraenkel set theory with the axiom of infinity negated are bi-interpretable.

In this note, I describe a theory of sets that is bi-interpretable with the theory of bounded arithmetic IDelta0 + exp. Because of the weakness of this theory of sets, I cannot straightforwardly adapt Kaye and Wong's interpretation of the arithmetic in the set theory. Instead, I am forced to produce a different interpretation.
Keywords interpretations  bounded arithmetic  weak set theory
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,337
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-08-07

Total downloads

34 ( #48,627 of 1,096,595 )

Recent downloads (6 months)

3 ( #99,452 of 1,096,595 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.