Tuscaloosa, AL 35487

Abstract
This paper introduces a hybrid model that combines connectionist, symbolic, and reinforcement learning for tackling reactive sequential decision tasks by a situated agent. Both procedural skills and high-level symbolic representations are acquired through an agent's experience interacting with the world, in a bottom-up direction. It deals with on-line learning, that is, learning continuously from on-going experience in the world, without the use of preconstructed data sets or preconceived concepts. The model is a connectionist one based on a two-level approach proposed earlier. Acknowledgements: This work is supported in part by O ce of Naval Research grant N00014-95-1-0440
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,826
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2012-09-05

Total downloads

1 ( #454,238 of 1,100,143 )

Recent downloads (6 months)

1 ( #304,144 of 1,100,143 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.