Induction and comparison

Frege proved an important result, concerning the relation of arithmetic to second-order logic, that bears on several issues in linguistics. Frege’s Theorem illustrates the logic of relations like PRECEDES(x, y) and TALLER(x, y), while raising doubts about the idea that we understand sentences like ‘Carl is taller than Al’ in terms of abstracta like heights and numbers. Abstract paraphrase can be useful—as when we say that Carl’s height exceeds Al’s—without reflecting semantic structure. Related points apply to causal relations, and even grammatical relations like DOMINATES(x, y). Perhaps surprisingly, Frege provides the resources needed to recursively characterize labelled expressions without characterizing them as sets. His theorem may also bear on questions about the meaning and acquisition of number words.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,201
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

9 ( #444,375 of 1,940,962 )

Recent downloads (6 months)

1 ( #457,978 of 1,940,962 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.