Correlation Polytopes and the Geometry of Limit Laws in Probability

Abstract
Let be n events in a probability space, and suppose that we have only partial information about the distribution: The probabilites of the events themselves, and their pair intersections. With this partial information we cannot, usually, deternine the probability of an event B in the algebra generated by the 's, but we can obtain lower and upper bounds. This is done by a linear program related to the correlation polytope c(n), a structure introduced in [3], [4]. In the first part of the paper I demonstrate how laws of large numbers (for sequences of events which are not necessarily independent) can be proved, using only the duality theorem of linear programming. These include the weak law of large numbers (necessary and sufficient condition) and various sufficient conditions for strong laws. The connection between these laws and the facet structure of the correlation polytope is established. In the second part of the paper I consider a more general case. Assume that our information consists of the values of the probabilities of all intersections of the 's up to size k, k < n. The techniques of linear programming lead naturally to an application of the theory of polynomial approximation in estimating the size of various events. In particular, I prove an approximate version of the central limit theorem.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2010-12-22

    Total downloads

    20 ( #71,667 of 1,088,400 )

    Recent downloads (6 months)

    1 ( #69,601 of 1,088,400 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.