Gauge-invariant localization of infinitely many gravitational energies from all possible auxiliary structures

The problem of finding a covariant expression for the distribution and conservation of gravitational energy-momentum dates to the 1910s. A suitably covariant infinite-component localization is displayed, reflecting Bergmann's realization that there are infinitely many gravitational energy-momenta. Initially use is made of a flat background metric (or rather, all of them) or connection, because the desired gauge invariance properties are obvious. Partial gauge-fixing then yields an appropriate covariant quantity without any background metric or connection; one version is the collection of pseudotensors of a given type, such as the Einstein pseudotensor, in _every_ coordinate system. This solution to the gauge covariance problem is easily adapted to any pseudotensorial expression (Landau-Lifshitz, Goldberg, Papapetrou or the like) or to any tensorial expression built with a background metric or connection. Thus the specific functional form can be chosen on technical grounds such as relating to Noether's theorem and yielding expected values of conserved quantities in certain contexts and then rendered covariant using the procedure described here. The application to angular momentum localization is straightforward. Traditional objections to pseudotensors are based largely on the false assumption that there is only one gravitational energy rather than infinitely many.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA
J. Brian Pitts (2014). Change in Hamiltonian General Relativity From the Lack of a Time-Like Killing Vector Field. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 47:68-89.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

54 ( #63,378 of 1,726,249 )

Recent downloads (6 months)

9 ( #74,830 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.