On Symmetry and Conserved Quantities in Classical Mechanics

This paper expounds the relations between continuous symmetries and conserved quantities, i.e. Noether’s “first theorem”, in both the Lagrangian and Hamiltonian frameworks for classical mechanics. This illustrates one of mechanics’ grand themes: exploiting a symmetry so as to reduce the number of variables needed to treat a problem. I emphasise that, for both frameworks, the theorem is underpinned by the idea of cyclic coordinates; and that the Hamiltonian theorem is more powerful. The Lagrangian theorem’s main “ingredient”, apart from cyclic coordinates, is the rectification of vector fields afforded by the local existence and uniqueness of solutions to ordinary differential equations. For the Hamiltonian theorem, the main extra ingredients are the asymmetry of the Poisson bracket, and the fact that a vector field generates canonical transformations iff it is Hamiltonian.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,661
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
A. K. (2002). Which Symmetry? Noether, Weyl, and Conservation of Electric Charge. Studies in History and Philosophy of Science Part B 33 (1):3-22.
Richard Healey (2010). Gauge Symmetry and the Theta Vacuum. In Mauricio Suarez, Mauro Dorato & Miklos Redei (eds.), EPSA Philosophical Issues in the Sciences. Springer 105--116.
Bradford Skow (2010). On a Symmetry Argument for the Guidance Equation in Bohmian Mechanics. International Studies in the Philosophy of Science 24 (4):393-410.
Simon Saunders (2007). Mirroring as an a Priori Symmetry. Philosophy of Science 74 (4):452-480.

Monthly downloads

Added to index


Total downloads

45 ( #75,553 of 1,726,249 )

Recent downloads (6 months)

6 ( #118,705 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.