Quantum mechanics as a theory of probability

Abstract
We develop and defend the thesis that the Hilbert space formalism of quantum mechanics is a new theory of probability. The theory, like its classical counterpart, consists of an algebra of events, and the probability measures defined on it. The construction proceeds in the following steps: (a) Axioms for the algebra of events are introduced following Birkhoff and von Neumann. All axioms, except the one that expresses the uncertainty principle, are shared with the classical event space. The only models for the set of axioms are lattices of subspaces of inner product spaces over a field K. (b) Another axiom due to Soler forces K to be the field of real, or complex numbers, or the quaternions. We suggest a probabilistic reading of Soler's axiom. (c) Gleason's theorem fully characterizes the probability measures on the algebra of events, so that Born's rule is derived. (d) Gleason's theorem is equivalent to the existence of a certain finite set of rays, with a particular orthogonality graph (Wondergraph). Consequently, all aspects of quantum probability can be derived from rational probability assignments to finite "quantum gambles". (e) All experimental aspects of entanglement- the violation of Bell's inequality in particular- are explained as natural outcomes of the probabilistic structure. (f) We hypothesize that even in the absence of decoherence macroscopic entanglement can very rarely be observed, and provide a precise conjecture to that effect .We also discuss the relation of the present approach to quantum logic, realism and truth, and the measurement problem.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Meir Hemmo (2007). Quantum Probability and Many Worlds. Studies in History and Philosophy of Science Part B 38 (2):333-350.
    Jeffrey Bub (2007). Quantum Probabilities as Degrees of Belief. Studies in History and Philosophy of Science Part B 38 (2):232-254.
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    38 ( #38,114 of 1,088,400 )

    Recent downloads (6 months)

    1 ( #69,601 of 1,088,400 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.