On propensity-frequentist models for stochastic phenomena; with applications to bell's theorem

The paper develops models of statistical experiments that combine propensities with frequencies, the underlying theory being the branching space-times (BST) of Belnap (1992). The models are then applied to analyze Bell's theorem. We prove the so-called Bell-CH inequality via the assumptions of a BST version of Outcome Independence and of (non-probabilistic) No Conspiracy. Notably, neither the condition of probabilistic No Conspiracy nor the condition of Parameter Independence is needed in the proof. As the Bell-CH inequality is most likely experimentally falsified, the choice is this: contrary to the appearances, experimenters cannot choose some measurement settings, or some transitions, with spacelike related initial events, are correlated; or both.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    24 ( #61,004 of 1,088,777 )

    Recent downloads (6 months)

    15 ( #7,474 of 1,088,777 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.