Propositional quantification in the monadic fragment of intuitionistic logic

Journal of Symbolic Logic 63 (1):269-300 (1998)
Abstract
We study the monadic fragment of second order intuitionistic propositional logic in the language containing the standard propositional connectives and propositional quantifiers. It is proved that under the topological interpretation over any dense-in-itself metric space, the considered fragment collapses to Heyting calculus. Moreover, we prove that the topological interpretation over any dense-in-itself metric space of fragment in question coincides with the so-called Pitts' interpretation. We also prove that all the nonstandard propositional operators of the form q $\mapsto \exists$ p (q $\leftrightarrow$ F(p)), where F is an arbitrary monadic formula of the variable p, are definable in the language of Heyting calculus under the topological interpretation of intuitionistic logic over sufficiently regular spaces
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,068
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

8 ( #178,926 of 1,101,815 )

Recent downloads (6 months)

4 ( #91,766 of 1,101,815 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.