On Gravitational Effects in the Schrödinger Equation

Foundations of Physics 44 (4):368-388 (2014)
  Copy   BIBTEX

Abstract

The Schrödinger equation for a particle of rest mass $m$ and electrical charge $ne$ interacting with a four-vector potential $A_i$ can be derived as the non-relativistic limit of the Klein–Gordon equation $\left( \Box '+m^2\right) \varPsi =0$ for the wave function $\varPsi $ , where $\Box '=\eta ^{jk}\partial '_j\partial '_k$ and $\partial '_j=\partial _j -\mathrm {i}n e A_j$ , or equivalently from the one-dimensional action $S_1=-\int m ds +\int neA_i dx^i$ for the corresponding point particle in the semi-classical approximation $\varPsi \sim \exp {(\mathrm {i}S_1)}$ , both methods yielding the equation $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2m}\eta ^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + m + n e\phi \right) \varPsi $ in Minkowski space–time , where $\alpha ,\beta =1,2,3$ and $\phi =-A_0$ . We show that these two methods generally yield equations that differ in a curved background space–time $g_{ij}$ , although they coincide when $g_{0\alpha }=0$ if $m$ is replaced by the effective mass $\mathcal{M}\equiv \sqrt{m^2-\xi R}$ in both the Klein–Gordon action $S$ and $S_1$ , allowing for non-minimal coupling to the gravitational field, where $R$ is the Ricci scalar and $\xi $ is a constant. In this case $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2\mathcal{M}'} g^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + \mathcal{M}\phi ^{(\mathrm g)} + n e\phi \right) \varPsi $ , where $\phi ^{(\mathrm g)} =\sqrt{g_{00}}$ and $\mathcal{M}'=\mathcal{M}/\phi ^{(\mathrm g)} $ , the correctness of the gravitational contribution to the potential having been verified to linear order $m\phi ^{(\mathrm g)} $ in the thermal-neutron beam interferometry experiment due to Colella et al. Setting $n=2$ and regarding $\varPsi $ as the quasi-particle wave function, or order parameter, we obtain the generalization of the fundamental macroscopic Ginzburg-Landau equation of superconductivity to curved space–time. Conservation of probability and electrical current requires both electromagnetic gauge and space–time coordinate conditions to be imposed, which exemplifies the gravito-electromagnetic analogy, particularly in the stationary case, when div ${{\varvec{A}}}=\hbox {div}{{\varvec{A}}}^{(\mathrm g)}=0$ , where ${{\varvec{A}}}^{\alpha }=-A^{\alpha }$ and ${{\varvec{A}}}^{(\mathrm g)\alpha }=-\phi ^{(\mathrm g)}g^{0\alpha }$ . The quantum-cosmological Schrödinger (Wheeler–DeWitt) equation is also discussed in the $\mathcal{D}$ -dimensional mini-superspace idealization, with particular regard to the vacuum potential $\mathcal V$ and the characteristics of the ground state, assuming a gravitational Lagrangian $L_\mathcal{D}$ which contains higher-derivative terms up to order $\mathcal{R}^4$ . For the heterotic superstring theory , $L_\mathcal{D}$ consists of an infinite series in $\alpha '\mathcal{R}$ , where $\alpha '$ is the Regge slope parameter, and in the perturbative approximation $\alpha '|\mathcal{R}| \ll 1$ , $\mathcal V$ is positive semi-definite for $\mathcal{D} \ge 4$ . The maximally symmetric ground state satisfying the field equations is Minkowski space for $3\le {\mathcal {D}}\le 7$ and anti-de Sitter space for $8 \le \mathcal {D} \le 10$

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,386

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

On Vacuum Fluctuations and Particle Masses.M. D. Pollock - 2012 - Foundations of Physics 42 (10):1300-1328.
Observables and Statistical Maps.Stan Gudder - 1999 - Foundations of Physics 29 (6):877-897.
An example related to Gregory’s Theorem.J. Johnson, J. F. Knight, V. Ocasio & S. VanDenDriessche - 2013 - Archive for Mathematical Logic 52 (3-4):419-434.
Partitions of large Rado graphs.M. Džamonja, J. A. Larson & W. J. Mitchell - 2009 - Archive for Mathematical Logic 48 (6):579-606.

Analytics

Added to PP
2014-03-01

Downloads
36 (#434,037)

6 months
3 (#1,002,413)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Add more citations

References found in this work

The theory of relativity.Christian Møller - 1952 - Oxford,: Clarendon Press.
Quantum Gravity.Claus Kiefer - 2004 - Oxford University Press UK.
On Vacuum Fluctuations and Particle Masses.M. D. Pollock - 2012 - Foundations of Physics 42 (10):1300-1328.

Add more references