The logical foundations of goal-regression planning in autonomous agents

This paper addresses the logical foundations of goal-regression planning in autonomous rational agents. It focuses mainly on three problems. The first is that goals and subgoals will often be conjunctions, and to apply goal-regression planning to a conjunction we usually have to plan separately for the conjuncts and then combine the resulting subplans. A logical problem arises from the fact that the subplans may destructively interfere with each other. This problem has been partially solved in the AI literature (e.g., in SNLP and UCPOP), but the solutions proposed there work only when a restrictive assumption is satisfied. This assumption pertains to the computability of threats. It is argued that this assumption may fail for an autonomous rational agent operating in a complex environment. Relaxing this assumption leads to a theory of defeasible planning. The theory is formulated precisely and an implementation in the OSCAR architecture is discussed.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 13,029
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA
Similar books and articles

Monthly downloads

Added to index


Total downloads

8 ( #192,639 of 1,410,530 )

Recent downloads (6 months)

2 ( #108,810 of 1,410,530 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.