Le problème Des granDes puissances et celui Des granDes racines

Journal of Symbolic Logic 65 (4):1675-1685 (2000)
Abstract
Let f be a function from N to N that can not be computed in polynomial time, and let a be an element of a differential field K of characteristic 0. The problem of large powers is the set of tuples x̄ = (x 1 ,..., x n ) of K so that x 1 = a f(n) , and the problem of large roots is the set of tuples x̄ of K so that x f(n) 1 = a. These are two examples of problems that the use of derivation does not allow to solve quicker. We show that the problem of large roots is not polynomial for the differential field K, even if we use a polynomial number of parameters, and that the problem of large powers is not polynomial for the differential field K, even for non-uniform complexity. The proofs use the polynomial stability (i.e., the elimination of parameters) of field of characteristic 0, shown by L. Blum. F. Cucker. M. Shub and S. Smale, and the reduction lemma, that transforms a differential polynomial in variables x̄ into a polynomial in variables x̄. and their derivatives
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,351
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index

    2009-01-28

    Total downloads

    0

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.