A pragmatic interpretation of intuitionistic propositional logic

Erkenntnis 43 (1):81 - 109 (1995)
We construct an extension P of the standard language of classical propositional logic by adjoining to the alphabet of a new category of logical-pragmatic signs. The well formed formulas of are calledradical formulas (rfs) of P;rfs preceded by theassertion sign constituteelementary assertive formulas of P, which can be connected together by means of thepragmatic connectives N, K, A, C, E, so as to obtain the set of all theassertive formulas (afs). Everyrf of P is endowed with atruth value defined classically, and everyaf is endowed with ajustification value, defined in terms of the intuitive notion of proof and depending on the truth values of its radical subformulas. In this framework, we define the notion ofpragmatic validity in P and yield a list of criteria of pragmatic validity which hold under the assumption that only classical metalinguistic procedures of proof be accepted. We translate the classical propositional calculus (CPC) and the intuitionistic propositional calculus (IPC) into the assertive part of P and show that this translation allows us to interpret Intuitionistic Logic as an axiomatic theory of the constructive proof concept rather than an alternative to Classical Logic. Finally, we show that our framework provides a suitable background for discussing classical problems in the philosophy of logic.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1007/BF01131841
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 19,625
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

View all 36 references / Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

24 ( #152,004 of 1,789,925 )

Recent downloads (6 months)

4 ( #197,702 of 1,789,925 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.