Philosophy of mathematics: Set theory, measuring theories, and nominalism

Abstract
The ten contributions in this volume range widely over topics in the philosophy of mathematics. The four papers in Part I (entitled "Set Theory, Inconsistency, and Measuring Theories") take up topics ranging from proposed resolutions to the paradoxes of naïve set theory, paraconsistent logics as applied to the early infinitesimal calculus, the notion of "purity of method" in the proof of mathematical results, and a reconstruction of Peano's axiom that no two distinct numbers have the same successor. Papers in the second part ("The Challenge of Nominalism") concern the nominalistic thesis that there are no abstract objects. The two contributions in Part III ("Historical Background") consider the contributions of Mill, Frege, and Descartes to the philosophy of mathematics.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 12,101
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-05-11

Total downloads

52 ( #33,848 of 1,102,097 )

Recent downloads (6 months)

1 ( #306,622 of 1,102,097 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.