Basic elements and problems of probability theory

After a brief review of ontic and epistemic descriptions, and of subjective, logical and statistical interpretations of probability, we summarize the traditional axiomatization of calculus of probability in terms of Boolean algebras and its set-theoretical realization in terms of Kolmogorov probability spaces. Since the axioms of mathematical probability theory say nothing about the conceptual meaning of “randomness” one considers probability as property of the generating conditions of a process so that one can relate randomness with predictability (or retrodictability). In the measure-theoretical codification of stochastic processes genuine chance processes can be defined rigorously as so-called regular processes which do not allow a long-term prediction. We stress that stochastic processes are equivalence classes of individual point functions so that they do not refer to individual processes but only to an ensemble of statistically equivalent individual processes. Less popular but conceptually more important than statistical descriptions are individual descriptions which refer to individual chaotic processes. First, we review the individual description based on the generalized harmonic analysis by Norbert Wiener. It allows the definition of individual purely chaotic processes which can be interpreted as trajectories of regular statistical stochastic processes. Another individual description refers to algorithmic procedures which connect the intrinsic randomness of a finite sequence with the complexity of the shortest program necessary to produce the sequence. Finally, we ask why there can be laws of chance. We argue that random events fulfill the laws of chance if and only if they can be reduced to (possibly hidden) deterministic events. This mathematical result may elucidate the fact that not all nonpredictable events can be grasped by the methods of mathematical probability theory.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,316
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

12 ( #354,010 of 1,902,524 )

Recent downloads (6 months)

1 ( #452,252 of 1,902,524 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.