Inconsistent models of arithmetic. Part II: The general case

Journal of Symbolic Logic 65 (4):1519-1529 (2000)
Abstract
The paper establishes the general structure of the inconsistent models of arithmetic of [7]. It is shown that such models are constituted by a sequence of nuclei. The nuclei fall into three segments: the first contains improper nuclei; the second contains proper nuclei with linear chromosomes; the third contains proper nuclei with cyclical chromosomes. The nuclei have periods which are inherited up the ordering. It is also shown that the improper nuclei can have the order type of any ordinal, of the rationals, or of any other order type that can be embedded in the rationals in a certain way
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    10 ( #120,393 of 1,088,810 )

    Recent downloads (6 months)

    2 ( #42,743 of 1,088,810 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.