Probability in the Everett world: Comments on Wallace and Greaves

It is often objected that the Everett interpretation of QM cannot make sense of quantum probabilities, in one or both of two ways: either it can’t make sense of probability at all, or it can’t explain why probability should be governed by the Born rule. David Deutsch has attempted to meet these objections. He argues not only that rational decision under uncertainty makes sense in the Everett interpretation, but also that under reasonable assumptions, the credences of a rational agent in an Everett world should be constrained by the Born rule. David Wallace has developed and defended Deutsch’s proposal, and greatly clarified its conceptual basis. In particular, he has stressed its reliance on the distinguishing symmetry of the Everett view, viz., that all possible outcomes of a quantum measurement are treated as equally real. The argument thus tries to make a virtue of what has usually been seen as the main obstacle to making sense of probability in the Everett world. In this note I outline some objections to the Deutsch-Wallace argument, and to related proposals by Hilary Greaves about the epistemology of Everettian QM. (In the latter case, my arguments include an appeal to an Everettian analogue of the Sleeping Beauty problem.) The common thread to these objections is that the symmetry in question remains a very significant obstacle to making sense of probability in the Everett interpretation.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,667
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA
Dennis Dieks (2007). Probability in Modal Interpretations of Quantum Mechanics. Studies in History and Philosophy of Science Part B 38 (2):292-310.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

68 ( #50,109 of 1,726,249 )

Recent downloads (6 months)

7 ( #99,332 of 1,726,249 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.