Meyer's (or Putnam's) proof of the existence of God

Let S be the set of all entities that exist (or have existed). Define the relation <= on S by saying that x<=y if and only y is a cause of x. By verbal fiat we will define x to be a cause of x for all x in S (if we do not accept this definition, our assumptions will be slightly different; however, it is clear that the existence of x is necessary and sufficient for the existence of x, and that the existence of x is never strictly temporally posterior to that of x, so calling x a cause of itself is not such a bad idea.) Then, <= is transitive, and moreover if x<=y and y<=x, then x=y (i.e., there are no circles of causation). Hence, <= defines a partial ordering on S.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 21,496
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

20 ( #194,732 of 1,911,838 )

Recent downloads (6 months)

1 ( #458,984 of 1,911,838 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.