Two no-go theorems for modal interpretations of quantum mechanics

Abstract
Modal interpretations take quantum mechanics as a theory which assigns at all times definite values to magnitudes of quantum systems. In the case of single systems, modal interpretations manage to do so without falling prey to the Kochen and Specker no-go theorem, because they assign values only to a limited set of magnitudes. In this paper I present two further no-go theorems which prove that two modal interpretations become nevertheless problematic when applied to more than one system. The first theorem proves that the modal interpretation proposed by Kochen and by Dieks cannot correlate the values simultaneously assigned to three systems. The second and new theorem proves that the atomic modal interpretation proposed by Bacciagaluppi and Dickson and by Dieks cannot correlate the values simultaneously and sequentially assigned to two systems if one assumes that these correlations are uniquely related to the dynamics of the state of the systems.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2009-01-28

    Total downloads

    4 ( #198,645 of 1,089,154 )

    Recent downloads (6 months)

    0

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.