Two no-go theorems for modal interpretations of quantum mechanics

Abstract
Modal interpretations take quantum mechanics as a theory which assigns at all times definite values to magnitudes of quantum systems. In the case of single systems, modal interpretations manage to do so without falling prey to the Kochen and Specker no-go theorem, because they assign values only to a limited set of magnitudes. In this paper I present two further no-go theorems which prove that two modal interpretations become nevertheless problematic when applied to more than one system. The first theorem proves that the modal interpretation proposed by Kochen and by Dieks cannot correlate the values simultaneously assigned to three systems. The second and new theorem proves that the atomic modal interpretation proposed by Bacciagaluppi and Dickson and by Dieks cannot correlate the values simultaneously and sequentially assigned to two systems if one assumes that these correlations are uniquely related to the dynamics of the state of the systems.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,612
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

6 ( #201,338 of 1,098,428 )

Recent downloads (6 months)

2 ( #173,417 of 1,098,428 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.