Many-place sequent calculi for finitely-valued logics

Logica Universalis 4 (1):41-66 (2010)
In this paper, we study multiplicative extensions of propositional many-place sequent calculi for finitely-valued logics arising from those introduced in Sect. 5 of Pynko (J Multiple-Valued Logic Soft Comput 10:339–362, 2004) through their translation by means of singularity determinants for logics and restriction of the original many-place sequent language. Our generalized approach, first of all, covers, on a uniform formal basis, both the one developed in Sect. 5 of Pynko (J Multiple-Valued Logic Soft Comput 10:339–362, 2004) for singular finitely-valued logics (when singularity determinants consist of a variable alone) and conventional Gentzen-style (i.e., two-place sequent) calculi suggested in Pynko (Bull Sect Logic 33(1):23–32, 2004) for finitely-valued logics with equality determinant. In addition, it provides a universal method of constructing Tait-style (i.e., one-place sequent) calculi for finitely-valued logics with singularity determinant (in particular, for Łukasiewicz finitely-valued logics) that fits the well-known Tait calculus (Lecture Notes in Mathematics, Springer, Berlin, 1968) for the classical logic. We properly extend main results of Pynko (J Multiple-Valued Logic Soft Comput 10:339–362, 2004) and explore calculi under consideration within the framework of Sect. 7 of Pynko (Arch Math Logic 45:267–305, 2006), generalizing the results obtained in Sect. 7.5 of Pynko (Arch Math Logic 45:267–305 2006) for two-place sequent calculi associated with finitely-valued logics with equality determinant according to Pynko (Bull Sect Logic 33(1):23–32, 2004). We also exemplify our universal elaboration by applying it to some denumerable families of well-known finitely-valued logics.
Keywords Many-place sequent calculus  finitely-valued logic  many-place matrix  singularity determinant
Categories (categorize this paper)
DOI 10.1007/s11787-010-0013-2
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 16,658
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

23 ( #128,632 of 1,725,989 )

Recent downloads (6 months)

4 ( #183,615 of 1,725,989 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.