Many-place sequent calculi for finitely-valued logics

Logica Universalis 4 (1):41-66 (2010)
Abstract
In this paper, we study multiplicative extensions of propositional many-place sequent calculi for finitely-valued logics arising from those introduced in Sect. 5 of Pynko (J Multiple-Valued Logic Soft Comput 10:339–362, 2004) through their translation by means of singularity determinants for logics and restriction of the original many-place sequent language. Our generalized approach, first of all, covers, on a uniform formal basis, both the one developed in Sect. 5 of Pynko (J Multiple-Valued Logic Soft Comput 10:339–362, 2004) for singular finitely-valued logics (when singularity determinants consist of a variable alone) and conventional Gentzen-style (i.e., two-place sequent) calculi suggested in Pynko (Bull Sect Logic 33(1):23–32, 2004) for finitely-valued logics with equality determinant. In addition, it provides a universal method of constructing Tait-style (i.e., one-place sequent) calculi for finitely-valued logics with singularity determinant (in particular, for Łukasiewicz finitely-valued logics) that fits the well-known Tait calculus (Lecture Notes in Mathematics, Springer, Berlin, 1968) for the classical logic. We properly extend main results of Pynko (J Multiple-Valued Logic Soft Comput 10:339–362, 2004) and explore calculi under consideration within the framework of Sect. 7 of Pynko (Arch Math Logic 45:267–305, 2006), generalizing the results obtained in Sect. 7.5 of Pynko (Arch Math Logic 45:267–305 2006) for two-place sequent calculi associated with finitely-valued logics with equality determinant according to Pynko (Bull Sect Logic 33(1):23–32, 2004). We also exemplify our universal elaboration by applying it to some denumerable families of well-known finitely-valued logics.
Keywords Many-place sequent calculus  finitely-valued logic  many-place matrix  singularity determinant
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2010-02-10

    Total downloads

    19 ( #74,857 of 1,089,127 )

    Recent downloads (6 months)

    1 ( #69,735 of 1,089,127 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.