Discrete tense logic with infinitary inference rules and systematic frame constants: A Hilbert-style axiomatization [Book Review]

Journal of Philosophical Logic 25 (1):45 - 100 (1996)
The paper deals with the problem of axiomatizing a system T1 of discrete tense logic, where one thinks of time as the set Z of all the integers together with the operations +1 ("immediate successor") and-1 ("immediate predecessor"). T1 is like the Segerberg-Sundholm system WI in working with so-called infinitary inference ruldes; on the other hand, it differs from W I with respect to (i) proof-theoretical setting, (ii) presence of past tense operators and a "now" operator, and, most importantly, with respect to (iii) the presence in T1 of so-called systematic frame constants, which are meant to hold at exactly one point in a temporal structure and to enable us to express the irreflexivity of such structures. Those frame constants will be seen to play a paramount role in our axiomatization of T1
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    5 ( #178,805 of 1,089,047 )

    Recent downloads (6 months)

    1 ( #69,722 of 1,089,047 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.