Bootstrapping the PC and CPC Algorithms to Improve Search Accuracy

Abstract
By bootstrapping the output of the PC algorithm (Spirtes et al., 2000; Meek 1995), using larger conditioning sets informed by the current graph state, it is possible to define a novel algorithm, JPC, that improves accuracy of search for i.i.d. data drawn from linear, Gaussian, sparse to moderately dense models. The motivation for constructing sepsets using information in the current graph state is to highlight the differences between d-­‐separation information in the graph and conditional independence information extracted from the sample. The same idea can be pursued for any algorithm for which conditioning sets informed by the current graph state can be constructed and for which an orientation procedure capable of orienting undirected graphs can be extracted. Another plausible candidate for such retrofitting is the CPC algorithm (Ramsey et al, 2006), yielding an algorithm, JCPC, which, when the true graph is sparse is somewhat more accurate than JPC. The method is not feasible for discovery for models of categorical variables, i.e., traditional Bayes nets; with alternative tests for conditional independence it may extend to non-­‐linear or non-­‐Gaussian models, or both
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,948
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2010-09-14

Total downloads

3 ( #292,272 of 1,100,763 )

Recent downloads (6 months)

2 ( #176,465 of 1,100,763 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.