Experiments on the Accuracy of Algorithms for Inferring the Structure of Genetic Regulatory Networks from Microarray Expression Levels

Abstract
After reviewing theoretical reasons for doubting that machine learning methods can accurately infer gene regulatory networks from microarray data, we test 10 algorithms on simulated data from the sea urchin network, and on microarray data for yeast compared with recent experimental determinations of the regulatory network in the same yeast species. Our results agree with the theoretical arguments: most algorithms are at chance for determining the existence of a regulatory connection between gene pairs, and the algorithms that perform better than chance are nonetheless so errorprone as to be of little practical use in these applications.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,399
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Ehud Lamm (2009). Conceptual and Methodological Biases in Network Models. Annals of the New York Academy of Sciences 1178:291-304.
Rosario M. Piro (2011). Are All Genes Regulatory Genes? Biology and Philosophy 26 (4):595-602.
Analytics

Monthly downloads

Added to index

2010-12-22

Total downloads

3 ( #298,062 of 1,102,949 )

Recent downloads (6 months)

2 ( #183,209 of 1,102,949 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.