Underdetermination, multiplicity, and mathematical logic

Abstract
Whether a collection of scientific data can be explained only by a unique theory or whether such data can be equally explained by multiple theories is one of the more contested issues in the history and philosophy of science. This paper argues that the case for multiple explanations is strengthened by the widespread failure of Models in mathematical logic to be unique ie categorical. Science is taken to require replicable and explicit public knowledge; this necessitates an unambiguous language for its transmission. Mathematics has been chosen as the vehicle to transmit scientific knowledge, both because of its 'unreasonable effectiveness' and because of its unambiguous nature, hence the vogue of axiomatic systems. But Mathematical Logic tells us that axiomatic systems need not refer to uniquely defined real structures. Hence what is accepted as Science may be only one of several possibilities.
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,365
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-09-23

Total downloads

1 ( #445,646 of 1,102,758 )

Recent downloads (6 months)

0

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.