Explicit mathematics with the monotone fixed point principle

Journal of Symbolic Logic 63 (2):509-542 (1998)
Abstract
The context for this paper is Feferman's theory of explicit mathematics, a formal framework serving many purposes. It is suitable for representing Bishop-style constructive mathematics as well as generalized recursion, including direct expression of structural concepts which admit self-application. The object of investigation here is the theory of explicit mathematics augmented by the monotone fixed point principle, which asserts that any monotone operation on classifications (Feferman's notion of set) possesses a least fixed point. To be more precise, the new axiom not merely postulates the existence of a least solution, but, by adjoining a new functional constant to the language, it is ensured that a fixed point is uniformly presentable as a function of the monotone operation. The upshot of the paper is that the latter extension of explicit mathematics (when based on classical logic) embodies considerable proof-theoretic strength. It is shown that it has at least the strength of the subsystem of second order arithmetic based on Π 1 2 comprehension
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,399
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Sorry, there are not enough data points to plot this chart.

Added to index

2009-01-28

Total downloads

2 ( #354,961 of 1,102,939 )

Recent downloads (6 months)

2 ( #183,209 of 1,102,939 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.