Applications of weak Kripke semantics to intermediate consequences

Studia Logica 45 (1):119 - 134 (1986)
Section 1 contains a Kripke-style completeness theorem for arbitrary intermediate consequences. In Section 2 we apply weak Kripke semantics to splittings in order to obtain generalized axiomatization criteria of the Jankov-type. Section 3 presents new and short proofs of recent results on implicationless intermediate consequences. In Section 4 we prove that these consequences admit no deduction theorem. In Section 5 all maximal logics in the 3 rd counterslice are determined. On these results we reported at the 1980 meeting on Mathematical Logic at Oberwolfach. This paper concerns propositional logic only.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA
    Andrzej Wronski (1981). Quasivarieties of Heyting Algebras. Bulletin of the Section of Logic 10 (3):128-131.
    Citations of this work BETA
    Lloyd Humberstone (2013). Replacement in Logic. Journal of Philosophical Logic 42 (1):49-89.
    Similar books and articles

    Monthly downloads

    Sorry, there are not enough data points to plot this chart.

    Added to index


    Total downloads


    Recent downloads (6 months)


    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.