When can non-commutative statistical inference be bayesian?

Abstract
Based on recalling two characteristic features of Bayesian statistical inference in commutative probability theory, a stability property of the inference is pointed out, and it is argued that that stability of the Bayesian statistical inference is an essential property which must be preserved under generalization of Bayesian inference to the non-commutative case. Mathematical no-go theorems are recalled then which show that, in general, the stability can not be preserved in non-commutative context. Two possible interpretations of the impossibility of generalization of Bayesian statistical inference to the non-commutative case are offered, none of which seems to be completely satisfying.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,360
External links
  • Through your library Configure
    References found in this work BETA
    Citations of this work BETA
    Giovanni Valente (2007). Is There a Stability Problem for Bayesian Noncommutative Probabilities? Studies in History and Philosophy of Science Part B 38 (4):832-843.
    Similar books and articles
    Analytics

    Monthly downloads

    Added to index

    2010-05-07

    Total downloads

    4 ( #198,580 of 1,088,854 )

    Recent downloads (6 months)

    1 ( #69,662 of 1,088,854 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature


    Discussion
    Start a new thread
    Order:
    There  are no threads in this forum
    Nothing in this forum yet.