When can non-commutative statistical inference be bayesian?

Abstract
Based on recalling two characteristic features of Bayesian statistical inference in commutative probability theory, a stability property of the inference is pointed out, and it is argued that that stability of the Bayesian statistical inference is an essential property which must be preserved under generalization of Bayesian inference to the non-commutative case. Mathematical no-go theorems are recalled then which show that, in general, the stability can not be preserved in non-commutative context. Two possible interpretations of the impossibility of generalization of Bayesian statistical inference to the non-commutative case are offered, none of which seems to be completely satisfying.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 11,449
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Citations of this work BETA
Giovanni Valente (2007). Is There a Stability Problem for Bayesian Noncommutative Probabilities? Studies in History and Philosophy of Science Part B 38 (4):832-843.
Similar books and articles
Analytics

Monthly downloads

Added to index

2010-05-07

Total downloads

7 ( #189,127 of 1,103,233 )

Recent downloads (6 months)

3 ( #121,213 of 1,103,233 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.