Logical independence in quantum logic

Foundations of Physics 25 (3):411-422 (1995)
The projection latticesP(ℳ1),P(ℳ2) of two von Neumann subalgebras ℳ1, ℳ2 of the von Neumann algebra ℳ are defined to be logically independent if A ∧ B≠0 for any 0≠AεP(ℳ1), 0≠BP(ℳ2). After motivating this notion in independence, it is shown thatP(ℳ1),P(ℳ2) are logically independent if ℳ1 is a subfactor in a finite factor ℳ andP(ℳ1),P(ℳ2 commute. Also, logical independence is related to the statistical independence conditions called C*-independence W*-independence, and strict locality. Logical independence ofP(ℳ1,P(ℳ2 turns out to be equivalent to the C*-independence of (ℳ1,ℳ2) for mutually commuting ℳ1,ℳ2 and it is shown that if (ℳ1,ℳ2) is a pair of (not necessarily commuting) von Neumann subalgebras, thenP(ℳ1,P(ℳ2 are logically independent in the following cases: ℳ is a finite-dimensional full-matrix algebra and ℳ1,ℳ2 are C*-independent; (ℳ1,ℳ2) is a W*-independent pair; ℳ1,ℳ2 have the property of strict locality
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1007/BF02059228
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 15,974
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

51 ( #66,162 of 1,725,840 )

Recent downloads (6 months)

3 ( #210,637 of 1,725,840 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.