Automated discovery of linear feedback models

Abstract
The introduction of statistical models represented by directed acyclic graphs (DAGs) has proved fruitful in the construction of expert systems, in allowing efficient updating algorithms that take advantage of conditional independence relations (Pearl, 1988, Lauritzen et al. 1993), and in inferring causal structure from conditional independence relations (Spirtes and Glymour, 1991, Spirtes, Glymour and Scheines, 1993, Pearl and Verma, 1991, Cooper, 1992). As a framework for representing the combination of causal and statistical hypotheses, DAG models have shed light on a number of issues in statistics ranging from Simpson’s Paradox to experimental design (Spirtes, Glymour and Scheines, 1993). The relations of DAGs with statistical constraints, and the equivalence and distinguishability properties of DAG models, are now well understood, and their characterization and computation involves three properties connecting graphical structure and probability distributions: (i) a local directed Markov property, (ii) a global directed Markov property, (iii) and factorizations of joint densities according to the structure of a graph (Lauritizen, et al., 1990).
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,978
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

6 ( #203,479 of 1,100,932 )

Recent downloads (6 months)

2 ( #176,807 of 1,100,932 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.