Automated discovery of linear feedback models

The introduction of statistical models represented by directed acyclic graphs (DAGs) has proved fruitful in the construction of expert systems, in allowing efficient updating algorithms that take advantage of conditional independence relations (Pearl, 1988, Lauritzen et al. 1993), and in inferring causal structure from conditional independence relations (Spirtes and Glymour, 1991, Spirtes, Glymour and Scheines, 1993, Pearl and Verma, 1991, Cooper, 1992). As a framework for representing the combination of causal and statistical hypotheses, DAG models have shed light on a number of issues in statistics ranging from Simpson’s Paradox to experimental design (Spirtes, Glymour and Scheines, 1993). The relations of DAGs with statistical constraints, and the equivalence and distinguishability properties of DAG models, are now well understood, and their characterization and computation involves three properties connecting graphical structure and probability distributions: (i) a local directed Markov property, (ii) a global directed Markov property, (iii) and factorizations of joint densities according to the structure of a graph (Lauritizen, et al., 1990).
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 9,357
External links
  •   Try with proxy.
  •   Try with proxy.
  •   Try with proxy.
  •   Try with proxy.
  •   Try with proxy.
  • Through your library Only published papers are available at libraries
    References found in this work BETA

    No references found.

    Citations of this work BETA

    No citations found.

    Similar books and articles

    Monthly downloads

    Added to index


    Total downloads

    4 ( #198,584 of 1,088,785 )

    Recent downloads (6 months)

    1 ( #69,666 of 1,088,785 )

    How can I increase my downloads?

    My notes
    Sign in to use this feature

    Start a new thread
    There  are no threads in this forum
    Nothing in this forum yet.