Additive partition of parametric information and its associated β-diversity measure

Acta Biotheoretica 51 (2) (2003)
Abstract
A desirable property of a diversity index is strict concavity. This implies that the pooled diversity of a given community sample is greater than or equal to but not less than the weighted mean of the diversity values of the constituting plots. For a strict concave diversity index, such as species richness S, Shannon''s entropy H or Simpson''s index 1-D, the pooled diversity of a given community sample can be partitioned into two non-negative, additive components: average within-plot diversity and between-plot diversity. As a result, species diversity can be summarized at various scales measuring all diversity components in the same units. Conversely, violation of strict concavity would imply the non-interpretable result of a negative diversity among community plots. In this paper, I apply this additive partition model generally adopted for traditional diversity measures to Aczél and Daróczy''s generalized entropy of type . In this way, a parametric measure of -diversity is derived as the ratio between the pooled sample diversity and the average within-plot diversity that represents the parametric analogue of Whittaker''s -diversity for data on species relative abundances.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,350
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
Analytics

Monthly downloads

Added to index

2009-01-28

Total downloads

2 ( #336,572 of 1,096,714 )

Recent downloads (6 months)

1 ( #271,187 of 1,096,714 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.