Enumerations of the Kolmogorov Function

Journal of Symbolic Logic 71 (2):501 - 528 (2006)
Abstract
A recursive enumerator for a function h is an algorithm f which enumerates for an input x finitely many elements including h(x), f is a k(n)-enumerator if for every input x of length n, h(x) is among the first k(n) elements enumerated by f. If there is a k(n)-enumerator for h then h is called k(n)-enumerable. We also consider enumerators which are only A-recursive for some oracle A. We determine exactly how hard it is to enumerate the Kolmogorov function, which assigns to each string x its Kolmogorov complexity: • For every underlying universal machine U, there is a constant a such that C is k(n)-enumerable only if k(n) ≥ n/a for almost all n. • For any given constant k, the Kolmogorov function is k-enumerable relative to an oracle A if and only if A is at least as hard as the halting problem. • There exists an r.e., Turing-incomplete set A such for every non-decreasing and unbounded recursive function k, the Kolmogorov function is k(n)-enumerable relative to A. The last result is obtained by using a relativizable construction for a nonrecursive set A relative to which the prefix-free Kolmogorov complexity differs only by a constant from the unrelativized prefix-free Kolmogorov complexity. Although every 2-enumerator for C is Turing hard for K, we show that reductions must depend on the specific choice of the 2-enumerator and there is no bound on the quantity of their queries. We show our negative results even for strong 2-enumerators as an oracle where the querying machine for any x gets directly an explicit list of all hypotheses of the enumerator for this input. The limitations are very general and we show them for any recursively bounded function g: • For every Turing reduction M and every non-recursive set B, there is a strong 2-enumerator f for g such that M does not Turing reduce B to f. • For every non-recursive set B, there is a strong 2-enumerator f for g such that B is not wtt-reducible to f. Furthermore, we deal with the resource-bounded case and give characterizations for the class ${\rm S}_{2}^{{\rm P}}$ introduced by Canetti and independently Russell and Sundaram and the classes PSPACE, EXP. • ${\rm S}_{2}^{{\rm P}}$ is the class of all sets A for which there is a polynomially bounded function g such that there is a polynomial time tt-reduction which reduces A to every strong 2-enumerator for g. • PSPACE is the class of all sets A for which there is a polynomially bounded function g such that there is a polynomial time Turing reduction which reduces A to every strong 2-enumerator for g. Interestingly, g can be taken to be the Kolmogorov function for the conditional space bounded Kolmogorov complexity. • EXP is the class of all sets A for which there is a polynomially bounded function g and a machine M which witnesses A ∈ PSPACEf for all strong 2-enumerators f for g. Finally, we show that any strong O(log n)-enumerator for the conditional space bounded Kolmogorov function must be PSPACE-hard if P = NP
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
 
Download options
PhilPapers Archive


Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 10,561
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Citations of this work BETA

No citations found.

Similar books and articles
T. A. Slaman (1986). ∑1 Definitions with Parameters. Journal of Symbolic Logic 51 (2):453 - 461.
William C. Calhoun (2006). Degrees of Monotone Complexity. Journal of Symbolic Logic 71 (4):1327 - 1341.
Analytics

Monthly downloads

Added to index

2010-08-24

Total downloads

3 ( #288,716 of 1,098,129 )

Recent downloads (6 months)

1 ( #283,807 of 1,098,129 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Start a new thread
Order:
There  are no threads in this forum
Nothing in this forum yet.