# The development of arithmetic in Frege's Grundgesetze der Arithmetik

Journal of Symbolic Logic 58 (2):579-601 (1993)
Abstract
Frege's development of the theory of arithmetic in his Grundgesetze der Arithmetik has long been ignored, since the formal theory of the Grundgesetze is inconsistent. His derivations of the axioms of arithmetic from what is known as Hume's Principle do not, however, depend upon that axiom of the system--Axiom V--which is responsible for the inconsistency. On the contrary, Frege's proofs constitute a derivation of axioms for arithmetic from Hume's Principle, in (axiomatic) second-order logic. Moreover, though Frege does prove each of the now standard Dedekind-Peano axioms, his proofs are devoted primarily to the derivation of his own axioms for arithmetic, which are somewhat different (though of course equivalent). These axioms, which may be yet more intuitive than the Dedekind-Peano axioms, may be taken to be "The Basic Laws of Cardinal Number", as Frege understood them. Though the axioms of arithmetic have been known to be derivable from Hume's Principle for about ten years now, it has not been widely recognized that Frege himself showed them so to be; nor has it been known that Frege made use of any axiomatization for arithmetic whatsoever. Grundgesetze is thus a work of much greater significance than has often been thought. First, Frege's use of the inconsistent Axiom V may invalidate certain of his claims regarding the philosophical significance of his work (viz., the establishment of Logicism), but it should not be allowed to obscure his mathematical accomplishments and his contribution to our understanding of arithmetic. Second, Frege's knowledge that arithmetic is derivable from Hume's Principle raises important sorts of questions about his philosophy of arithmetic. For example, "Why did Frege not simply abandon Axiom V and take Hume's Principle as an axiom?"
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2275220
Options
 Save to my reading list Follow the author(s) My bibliography Export citation Find it on Scholar Edit this record Mark as duplicate Revision history Request removal from index

 PhilPapers Archive Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 23,651 External links Setup an account with your affiliations in order to access resources via your University's proxy server Configure custom proxy (use this if your affiliation does not provide a proxy) Through your library Sign in / register to customize your OpenURL resolver.Configure custom resolver
References found in this work BETA
Citations of this work BETA
Similar books and articles

2009-01-28

47 ( #102,176 of 1,902,709 )